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Symmetries of independent statistical observables for ultrametric populations
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When N=2€, random dataX;, i=1,... N show ultrametric covariations, represented by a binary tree,
decorrelated observables are defined by a covariance matrix diagonalization. Eigenvalue degeneracies lead one
to regroup such observables into eigenprojectors. Symmetries of such projectors are discussed. Such symme-
tries and degeneracies influence the robustness of the corresponding measurements under random permutations
of data.

PACS numbdps): 87.10+e, 87.23-n

I. REMINDER OF PREVIOUS RESULTS subsets. The spectrum 6fis so highly degenerafd] that it
seems necessary to define independent observables related to

Ultrametric correlations are of intereft,2], in genetics  eigenprojectors rather than eigenvectors. The present report
for instance. It is useful to define observables whose correstudies symmetry properties of such eigenprojector observ-
lations are disentangled. In a previous pa&r we linearly  ables(EPO’S. We try to understand their significance, and
rearranged correlated variablés,i=1, ..., into inde- also appraise their robustness if, as a not uncommon pertur-
pendent ones, by diagonalizing the covariation mafriwith ~ bation of experimental data, some mislabeling occurs for the
elements Cj; = (X X;) —(X;){X;). Here, () denotes the leaves of the tree.
probabilistic average with respect to the probability govern- For the sake of definiteness, we often illustrate this report
ing such variableX; . These were assumed to derive from awith the caseG=3 and sometimes use notatios$, . . .,z
binary ultrametric tree withG generations. The rearranged instead of X{,X,, ... Xg. Generalizations to anys are
observables rea@®,==;_ Xi—Z; . ;X;, wherer designates most often obvious. The covariance matrix under study and
suitable partitiond UJ of the X's subscripts into two equal its eigenprojectors read, respectively,
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Here 1,1, andO are suitable X2 or 4x4 blocks of ones, E1=1-Ci, E;=1+c;—2¢,, and Eg=1+c;+2c,—4cs.
“minus ones,” and zeroes. For the sake of simplidig}, the ~ Generalizations foG=4 are obvious. WitlG generations in

subtraction—(X;)(X;) can be omitted. The numbecg are ~ @ binary tree and for any positive integes G, there exists
positive and smaller than 1. A normalization is implementedan eigenvalueE, =1+ 3K_12""1c,— 2" 1c,, with degen-
co=(X?)=1. The ranks of projector®,, Q,, andQ; are, eracy £ ¥ Figure 1 shows the G=3" tree. Degrees: and
respectively, 4, 2, and 1. The corresponding eigenvalues atg e.g., have parentage 1, because of their nearest common
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FIG. 1. Binary tree with three generations.

ancestorp. In turn, e.g., degrees and z have parentage 2
because of ancestan. Ultrametricity is implemented be-
cause, wheneveX; and X; have parentagg, thenC;; de-
pends ork only, Cj;=cy.

II. OBSERVABLES AND THEIR SYMMETRIES

Consider the row vectoN=[X,X,, ... X\] and its
transposed/ ", with a normalizatior=\_, X?=N. The matrix
elementsA =V Q, VT are the observables of interest in this
paper. They are normalized by the sum rﬁ]ézoAﬁN.
The projector QFo upon the symmetric eigenvector
[1,1,...,] is irrelevant here. FoG =3, the useful observ-
ables readsee Eqs(1)],

(s +(u—v)*+(W—x)*+(y—2)?

Ay 5 , (29
(s+t—u—v)?+(W+x—y—z)?
2= 7 , (2b)
(s+t+u+v—w—x—y—2)?
3= (20)

8 .

An interpretation is in order. Consider at levdethe binary

graph withG generations. The leaf and root levels are la-

beled byk=0 andk=G, respectively. At any levek, one
counts £~ K vertices. The same numbef 2¢ holds for the
“ingoing” branches coming from the root direction into
these vertices. Twice as many, namef/ 21, “outgoing”

branches emerge from such vertices toward the leaf direc-

tion. Each such outgoing branch ultimately generatés'2
leaves, hence the®2 ¥+ 1x 2k~1=2C total numbem of de-
grees of freedonX;. It is clear thatA, is a sum, over the
vertices at levek, of “square contrasts” between the two
outgoing branches at each vertex. More precisely,
each label of a variableX; with a combined lab€el«, 3, v},
wherea=1, ...,£ X denotes the vertex at levk| then 3

BRIEF REPORTS

4451

Consider the two branches emerging from each vertex at
level k, defining two “subfamilies” at level O(leaf leve).
Sum the degrees of freedom inside each subfamily. Square
the “subfamily contrast,” namely, the difference between
the two sums. Finally, sum such squares over all the pairs of
such subfamilies derived from levkl This makesA,. The
preexisting normalizations make it unnecessary to renormal-
ize Ay into “subfamily internal averages” and “averages
upon subfamily pairs” by additional denominators such as
21 the population of each subfamily, and®Z,
the number of subfamily pairs.

Should A strongly jump at a levek, one might suspect
that genetic diversification occurs at this level.

Each A exhibits three kinds of symmetries. First, it is a
symmetric function of the ingoing branches, see the index
in Eqg. (2). This “ingoing permutation group” makes
(2°7K1 symmetries. Them\, is a symmetric function of
those leaves related to each outgoing branch, see the ndex
in Eq. (3). Each outgoing branch provides a symmetry group
of (2K71)! permutations for leaves. Hence, because of
26-k+1 gutgoing branches, we fild2<~1)11?° " “out-
going symmetries.” FinallyA is even under the exchange
of the two branches emerging from each vertex. Hence

227 “parities.” The number of distinct permutations un-
der which A, is invariant reads

S(K)= (28 k[ (2K 1@ The% ), (4)

Special values areS(1)=2° (2611 and S(G)
=2[(2° 1172, A general asymptotic estimate is

— 2642674 267kG 4+ 26k

1+G
InS(k)=|

XIn2+

1
§+26—q"1w—26—2G-K (5)

When k increases from 1 t& for a givenG, the number
S(k) first decreases, reaches a minimum Ketlog, G, and
then increases. Indeed, from E§),

dIn[S(k)]

—~2G—k k__
dk =2 In2(2*-GIn2

—In7m—In2+1-2"C6*k"1), (6)
It is reasonable to consider that simultaneouShy 1, k>1,
(G—Kk)>1. At leading orders in all of these, the derivative
Eq. (6), vanishes whek=log,(G In 2)=log, G. This is con-

replac[‘-i.\rmed by Fig. 2, where of [in S(k)] for

G=8 andG=16 is plotted(in arbitrary unit3. The use of
In[In S] is due to the strong dependence&in terms ofk

=1,2 tells which of the two emerging branches is involved,;nd to the sharpness of the minima.

and finally y=1, ...,% ! labels the leaves ultimately re-
lated to that emerging branch. Then the observables read

2G—k /ok-1 k-1 2

Akzz_kE Z Xaly_z Xa27 (3)
a=1 \ y=1 y=1

To summarize this section, the number of symmetries of
the EPQ'’s strongly depends on the level lakeThis differs
from the number of symmetries for those eigenvector ob-
servablegEVO’s) discussed in Ref.3]. Indeed, the EVO'’s
readO,=3; | Xj— 2 ;X , Wherer designates suitable par-
titions 1UJ of the subscripts into two equal subsets. Hence,



4452 BRIEF REPORTS PRE 62

V7, the number of permutations that leave a giv@nin- all the off-diagonal elements a@f2. SinceC? is ultrametric
variant is just[(N/2)!1?=S(G)/2, the same for all EVO’s like C, all its rows and columns differ only by the order of
for a givenG. We found in Ref.[3] that the most robust the very same elements that theyzcontain, with the very same
EVO’s likely correspond tk=log, G. This may seem para- Multiplicities. Now, trivially, 2;(C*); = Z;CiCy;, and the
doxical, because this value &fgenerates a minimum num- SUM UpONj generates a constant=Z2;C;=1+ ¢, +2¢;

i 2
ber of symmetries for the EPO’s. The next Sections tell how™ acst -, which does not depend dn Hence;(C?);,
EPO robustness can be defined and lift the paradox. =o”. There remains to subtract the diagonal elementl

+c3+2c3+---, and finally the average off-diagonal ele-
(N _1y-1 G on—1. \2_
Ill. CONSEQUENCES OF LABELING CONFUSION m;”Gt Zn_lrgf]ds e=(N=1) T(1+2p=12" "cn)"~ 1
T “n=1 nl: - J—
Consider a random permutation of the labielsf the ex- The equality betweerR,=0,/4, R,=Q,/2, and R
perimental dat&X;. Let P be theNX N matrix representing = Q3 is not surprising. Indeed, after the renormalization by

the permutatior(zeroes everywhere, except for one “1” in 2%, the global factor is the same—2. More important,
each row and each columnThe projectorsQ, become the block structure of such “projectorsRy and the equal
PO P L If P does not belong to the symmetry group of numbers of+1 and —1 matrix elements, beside zeroes,
Ay, the diagonalization property,CCE)PQP t=0, makes 1_/(1— N)_ the net average of _the off-diagonal ele-
does not hold. Are such perturbed operators still closénents, since diagonal elements are jtist. The same rea-
enough to eigenprojectors 6fand can they define reliable SONing holds for anys. Hence thek dependence of reads
observables/PQ P~ 1VT, keeping in mind thaP is a ran- oG-k 2 o 2

dom unknown? This problem of robustness, investigated in G=27 H(B= 2B TrCRy+ Tr €% Ry
[3] for EVC_)’s O, will now be discussed fqr EPOAk. = 26-K(E2—2E, TrngJrTr@Rk), (10)

We define as the most robust that eigenprojector that s
minimizes the average, over all permutations, of the “qua-where there is no dependence upon the subs&ript 7R
dratic error,i’lnamely, the squgred Hermitian n<2)rm @ ( =26 Q.. For G=3, we obtain Tgﬁzl_czg_cl
~EJPQP . More precisely, since Qy=Q«,  —2c,-4cy)/7 and TIC2R=d-e=(7—2c;—4c,~8cs
(PQP 1)?=PQP~* and, VP, TrPQP 1=2°"K we 1 7¢2-4c,c,+ 1203~ 8c,Co— 160,45+ 1662)/7.
minimize, in terms ok, the quantity More generally, all matriceg!, being invariant under the

permutation group, depend on two parameteendv only,
G=(NH)"1> Tr{{(C—E)PQP [PQP HC-EY]} their diagonal and off-diagonal elements, respectively. Any
P diagonal element of any produgtR, contains on one hand
u, weighted by the diagonal elemeXt * of R,, and on the

=2C7KE24+(NI) "1 [(Trc2PQ, P~ h other hand/, weighted by all the off-diagonal zeroes N ~*
P and —N"! in a column of R,. The net balance of such
—2E(TrcPQ P Y)]. (7) off-diagonal weights is- N~ 1. Hence, the diagonal element

of the product boils down tdN~*(u—v). Finally, the trace
Upon examining the above equations, we notice the oceperation gives the general resultkazu—v.
currence of several “permutation averaged” operators of the To summarize this section, criterigh Eqgs.(10), is avail-
form able for the robustness of EPQO’s. While ultrametricity is suf-
ficient to define eigenvectors and eigenprojectors, the easy
A= -1 —1_ -1 -1 calculation ofg, however, demands an explicit model for the
A=(N) 2P PAPT=(NY) Ep: PAP. ® elementscy of C, which govern the eigenvalues. This is the
subject of the next section.
These are easily evaluated, according to the following obvi-
ous two rules(i) all the diagonal elements of are equal to IV ILLUSTRATIVE NUMERICAL EXAMPLE
the average of the diaggnal elements./fand, (i) all the We use the model described earli&f. The covariances
off-diagonal elements ofd are equal to the average of the are parametrized by one parameeonly, c,= 8. The pa-
off-diagonal elements ofd. If G=3, e.g., we find tha63 rametersd is a positive number, slightly smaller than one, and
has its diagonal equal to 1, and that all its off-diagonalrepresents a “survival” probability along any segment of the
_elements readc=(c;+2c,+4c3)/7. We also find, for “genetic” (ultrametrig graph. If 6=1—¢, the parametee
C§ the diagonal element$=1+ci+203+4c§, and the off-  indicates a small mutation probability for each generation.

diagonal ones, e=2(c,+2c,+4C3+2C;Cy+ C5+4C1Cey The formula forg then becomes

+8c,c5+6¢3)/7. Simultaneously we obtain, (28)k1-1 2
2}°6G=|1+ 56— 77— 21
- 1 1 26—1
-2 —_2-1n— N
2 Ql 2 Q QS 7I 56 11 (9) (25)k_1_1 1
7 is the unit matrix andl is an 8<8 block of ones.
(26)¢-1

To generalize forG>3, the rules governing and d are
transparent. We just state how one fied# is the average of

(26-1)(26-1)
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In[ln S(k)]
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FIG. 2. IIn S(k)] as a function ok for G=8, dashed line, and
G=16, solid line. Notice the minima fok=log, G. Scales arbi-
trarily adjusted to locate these minima at similar levels.

26%)°—
+1+52(252)_ —(2-17*
(26)¢—-17? ,(26%)%-1
X[ 1+5W —1—5m . (11)

A slightly tedious operation gives the expansion,

g
_:(26+k_22G+17k)82|n2+ 0(83),

K (12

The minimum for k=(G+1)/2 is confirmed by Fig. 3,
showing several case§,=8,16,20 with6=0.99,0.95. Simi-
lar conclusions hold for values efin the few percent range.
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FIG. 3. LG=Ing as a function ok for G=20 (upper paiy, G
=14 (middle), andG=8 (lower paip. Solid lines,5=0.99, dashed
lines, §=0.95. Notice the minima fok=(G+1)/2.

(i) All ©.'s show the same number of symmetries, hence
a similar robustness if one suspects that few dgtaarry
erroneous labels Conversely,A’s with k=log, G have a
minimum number of symmetries, hence are likely to be
slightly perturbed.

(iii) If many labelsi are suspect, robustness can be esti-
mated from criterions averaging over all permutations. In
both this paper and R€f3], we used criterions answering the
question “How doO, and A differ from eigenobservables
with eigenvalueE, ?” This is a significant question, because
Ey and the level in the graph are in a one-to-one correspon-
dence. Our criterions take into account several factors, such
as the whole set dt,’s with their hierarchy, their multiplici-

Despite the logarithmic scale used in Fig. 3, it is reasonabl@es, and the numbers of symmetries of the observables under
to claim that the shown minima are not very sharp. Hence &bel reshuffling.

reasonably broad band of valueslofmakes robust enough

quite a few EPQO’s around the optimal valke-(G+1)/2.

(iv) In that case, of completely random permutations, and
in the more specific model whewg,= 8", two distinct com-

Naturally, the conclusion is valid for the present model only,Promises occur between the factors influencing kSUCh robust-
but it is likely to have a wider range. A further discussion of ness criterions. FoO., the large degeneracy°2* favors
the validity of ultrametricty for realistic data is also in order, low valuesk=log, G, because random permutations might

anyhow. To the interested reader we suggest Fgf.

V. DISCUSSION AND CONCLUSION

In the situation ofG generations with “binary ultrametric-
ity” for genetic data, the results of Reff3] and the present
work can be summarized and discussed as follows.

(i) One can Fourier analyze experimental dafa,i
=1,...,# into “eigenvector components” O,
=1,...,2—1 or ‘“eigenprojector intensities” A, k

still convert an eigenvector into a mixture of eigenvectors
with the sameE,. The high degeneracy compensates for the
fact thatE, lies at the lower end of the spectrum. R,
which by its very definition(degeneracy already collecjed
shows no degeneracy, valuks-G/2 bring both a bigger
symmetry group and an eigenvalue well embedded in the
spectrum.

In practice, the reasonably flat minima shown in Fig. 3
make it reasonable to first use the EPO analysis. Jumps in the
Ay sequence might trigger some attention. The situation for

=1, ... ,G. Both sets of observables list decorrelated infor-robustness can be appraised, depending on whether the likely
mations about contrasts between the subfamilies describetuimber of wrong labels for the leaves of the graph is small
by the levels of the genetic graph. Both sets are useful tor large. After such considerations, an EVO analysis can

detect contrasts that might hint at genetic diversification.

make a useful complement.
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