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Symmetries of independent statistical observables for ultrametric populations

B. G. Giraud
Service de Physique The´orique, Centre d’Etudes de Saclay, 91191 Gif/Yvette, France

~Received 28 March 2000!

When N52G, random dataXi , i 51, . . . ,N show ultrametric covariations, represented by a binary tree,
decorrelated observables are defined by a covariance matrix diagonalization. Eigenvalue degeneracies lead one
to regroup such observables into eigenprojectors. Symmetries of such projectors are discussed. Such symme-
tries and degeneracies influence the robustness of the corresponding measurements under random permutations
of data.

PACS number~s!: 87.10.1e, 87.23.2n
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I. REMINDER OF PREVIOUS RESULTS

Ultrametric correlations are of interest@1,2#, in genetics
for instance. It is useful to define observables whose co
lations are disentangled. In a previous paper@3#, we linearly
rearranged correlated variablesXi , i 51, . . . ,2G into inde-
pendent ones, by diagonalizing the covariation matrixC, with
elements Ci j 5^XiXj&2^Xi&^Xj&. Here, ^ & denotes the
probabilistic average with respect to the probability gove
ing such variablesXi . These were assumed to derive from
binary ultrametric tree withG generations. The rearrange
observables readOt5( i PIXi2( j PJXj , wheret designates
suitable partitionsI øJ of the X’s subscripts into two equa
ed

a
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subsets. The spectrum ofC is so highly degenerate@4# that it
seems necessary to define independent observables rela
eigenprojectors rather than eigenvectors. The present re
studies symmetry properties of such eigenprojector obs
ables~EPO’s!. We try to understand their significance, an
also appraise their robustness if, as a not uncommon pe
bation of experimental data, some mislabeling occurs for
leaves of the tree.

For the sake of definiteness, we often illustrate this rep
with the caseG53 and sometimes use notationss,t, . . . ,z
instead of X1 ,X2 , . . . ,X8 . Generalizations to anyG are
most often obvious. The covariance matrix under study a
its eigenprojectors read, respectively,
C353
1 c1 c2 c2 c3 c3 c3 c3

c1 1 c2 c2 c3 c3 c3 c3

c2 c2 1 c1 c3 c3 c3 c3

c2 c2 c1 1 c3 c3 c3 c3

c3 c3 c3 c3 1 c1 c2 c2

c3 c3 c3 c3 c1 1 c2 c2

c3 c3 c3 c3 c2 c2 1 c1

c3 c3 c3 c3 c2 c2 c1 1

4 , Q15
1

2 3
1 21 0 0 0 0 0 0

21 1 0 0 0 0 0 0

0 0 1 21 0 0 0 0

0 0 21 1 0 0 0 0

0 0 0 0 1 21 0 0

0 0 0 0 21 1 0 0

0 0 0 0 0 0 1 21

0 0 0 0 0 0 21 1

4 ,

Q25
1

4F 1 1̄ 0 0

1̄ 1 0 0

0 0 1 1̄

0 0 1̄ 1

G , Q5
1

8F1 1̄

1̄ 1
G . ~1!
mon
Here 1, 1̄, and 0 are suitable 232 or 434 blocks of ones,
‘‘minus ones,’’ and zeroes. For the sake of simplicity@3#, the
subtraction2^Xi&^Xj& can be omitted. The numbersck are
positive and smaller than 1. A normalization is implement
c0[^Xi

2&51. The ranks of projectorsQ1 , Q2, andQ3 are,
respectively, 4, 2, and 1. The corresponding eigenvalues
,

re

E1512c1 , E2511c122c2, and E3511c112c224c3.
Generalizations forG>4 are obvious. WithG generations in
a binary tree and for any positive integerk<G, there exists
an eigenvalueEk511(n51

k212n21cn22k21ck , with degen-
eracy 2G2k. Figure 1 shows the ‘‘G53’’ tree. Degreesu and
v, e.g., have parentage 1, because of their nearest com
4450 ©2000 The American Physical Society
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ancestor,o. In turn, e.g., degreesx and z have parentage 2
because of ancestorm. Ultrametricity is implemented be
cause, wheneverXi and Xj have parentagek, then Ci j de-
pends onk only, Ci j 5ck .

II. OBSERVABLES AND THEIR SYMMETRIES

Consider the row vectorV[@X1 ,X2 , . . . ,XN# and its
transposedVT, with a normalization( i 51

N Xi
25N. The matrix

elementsLk[VQ kV
T are the observables of interest in th

paper. They are normalized by the sum rule(k50
G Lk5N.

The projector Q E0 upon the symmetric eigenvecto
@1,1, . . . ,1# is irrelevant here. ForG53, the useful observ-
ables read@see Eqs.~1!#,

L15
~s2t !21~u2v !21~w2x!21~y2z!2

2
, ~2a!

L25
~s1t2u2v !21~w1x2y2z!2

4
, ~2b!

L35
~s1t1u1v2w2x2y2z!2

8
. ~2c!

An interpretation is in order. Consider at levelk the binary
graph with G generations. The leaf and root levels are
beled byk50 andk5G, respectively. At any levelk, one
counts 2G2k vertices. The same number 2G2k holds for the
‘‘ingoing’’ branches coming from the root direction int
these vertices. Twice as many, namely 2G2k11, ‘‘outgoing’’
branches emerge from such vertices toward the leaf di
tion. Each such outgoing branch ultimately generates 2k21

leaves, hence the 2G2k1132k2152G total numberN of de-
grees of freedomXi . It is clear thatLk is a sum, over the
vertices at levelk, of ‘‘square contrasts’’ between the tw
outgoing branches at each vertex. More precisely, rep
each labeli of a variableXi with a combined label$a,b,g%,
wherea51, . . . ,2G2k denotes the vertex at levelk, thenb
51,2 tells which of the two emerging branches is involve
and finally g51, . . . ,2k21 labels the leaves ultimately re
lated to that emerging branch. Then the observables rea

Lk522k (
a51

2G2k S (
g51

2k21

Xa1g2 (
g51

2k21

Xa2gD 2

. ~3!

FIG. 1. Binary tree with three generations.
-

c-

ce

,

Consider the two branches emerging from each vertex
level k, defining two ‘‘subfamilies’’ at level 0~leaf level!.
Sum the degrees of freedom inside each subfamily. Squ
the ‘‘subfamily contrast,’’ namely, the difference betwee
the two sums. Finally, sum such squares over all the pair
such subfamilies derived from levelk. This makesLk . The
preexisting normalizations make it unnecessary to renorm
ize Lk into ‘‘subfamily internal averages’’ and ‘‘average
upon subfamily pairs’’ by additional denominators such
2k21, the population of each subfamily, and 2G2k,
the number of subfamily pairs.

ShouldLk strongly jump at a levelK, one might suspec
that genetic diversification occurs at this level.

EachLk exhibits three kinds of symmetries. First, it is
symmetric function of the ingoing branches, see the indea
in Eq. ~2!. This ‘‘ingoing permutation group’’ makes
(2G2k)! symmetries. ThenLk is a symmetric function of
those leaves related to each outgoing branch, see the indg
in Eq. ~3!. Each outgoing branch provides a symmetry gro
of (2k21)! permutations for leaves. Hence, because
2G2k11 outgoing branches, we find@(2k21)! # (2G2k11) ‘‘out-
going symmetries.’’ Finally,Lk is even under the exchang
of the two branches emerging from each vertex. Hen
2(2G2k) ‘‘parities.’’ The number of distinct permutations un
der whichLk is invariant reads

S~k!5~2G2k!! @~2k21!! # (2G2k11)2(2G2k). ~4!

Special values areS(1)52(2G21)(2G21)! and S(G)
52@(2G21)! #2. A general asymptotic estimate is

ln S~k!.S 11G2k

2
22G12G2k12G2kG12GkD

3 ln 21S 1

2
12G2kD ln p22G22G2k. ~5!

When k increases from 1 toG for a given G, the number
S(k) first decreases, reaches a minimum fork. log2 G, and
then increases. Indeed, from Eq.~5!,

d ln@S~k!#

dk
.2G2k ln 2~2k2G ln 2

2 ln p2 ln 211222G1k21!. ~6!

It is reasonable to consider that simultaneouslyG@1, k@1,
(G2k)@1. At leading orders in all of these, the derivativ
Eq. ~6!, vanishes whenk. log2(G ln 2).log2 G. This is con-
firmed by Fig. 2, where of ln@ln S(k)# for

G58 andG516 is plotted~in arbitrary units!. The use of
ln@ln S# is due to the strong dependence ofS in terms ofk
and to the sharpness of the minima.

To summarize this section, the number of symmetries
the EPO’s strongly depends on the level labelk. This differs
from the number of symmetries for those eigenvector
servables~EVO’s! discussed in Ref.@3#. Indeed, the EVO’s
readOt5( i PIXi2( j PJXj , wheret designates suitable par
titions I øJ of the subscripts into two equal subsets. Hen
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;t, the number of permutations that leave a givenOt in-
variant is just@(N/2)!#25S(G)/2, the same for all EVO’s
for a given G. We found in Ref.@3# that the most robus
EVO’s likely correspond tok. log2 G. This may seem para
doxical, because this value ofk generates a minimum num
ber of symmetries for the EPO’s. The next Sections tell h
EPO robustness can be defined and lift the paradox.

III. CONSEQUENCES OF LABELING CONFUSION

Consider a random permutation of the labelsi of the ex-
perimental dataXi . Let P be theN3N matrix representing
the permutation~zeroes everywhere, except for one ‘‘1’’ i
each row and each column!. The projectorsQk become
PQ kP

21. If P does not belong to the symmetry group
Lk , the diagonalization property, (C2Ek)PQ kP

2150,
does not hold. Are such perturbed operators still clo
enough to eigenprojectors ofC and can they define reliabl
observablesVPQ kP

21VT, keeping in mind thatP is a ran-
dom unknown? This problem of robustness, investigated
@3# for EVO’s Ot , will now be discussed for EPO’sLk .

We define as the most robust that eigenprojector
minimizes the average, over all permutations, of the ‘‘qu
dratic error,’’ namely, the squared Hermitian norm ofC
2Ek)PQ kP

21. More precisely, since Q k
25Qk ,

(PQ kP
21)25PQ kP

21 and, ;P,Tr PQ kP
2152G2k, we

minimize, in terms ofk, the quantity

G5~N! !21(
P

Tr $@~C2Ek!PQ kP
21#@PQ kP

21~C2Ek!#%

52G2kEk
21~N! !21(

P
@~Tr C 2PQ kP

21!

22Ek~Tr CPQ kP
21!#. ~7!

Upon examining the above equations, we notice the
currence of several ‘‘permutation averaged’’ operators of
form

Ā[~N! !21(
P

PAP215~N! !21(
P

P21AP. ~8!

These are easily evaluated, according to the following ob
ous two rules,~i! all the diagonal elements ofĀ are equal to
the average of the diagonal elements ofA, and, ~ii ! all the
off-diagonal elements ofĀ are equal to the average of th

off-diagonal elements ofA. If G53, e.g., we find thatC̄3
has its diagonal equal to 1, and that all its off-diagon
elements readc5(c112c214c3)/7. We also find, for

C3
2̄ the diagonal elementsd511c1

212c2
214c3

2, and the off-
diagonal ones, e52(c112c214c312c1c21c2

214c1cc3

18c2c316c3
2)/7. Simultaneously we obtain,

222Q̄15221Q̄5Q̄35
1

7
I2

1

56
1, ~9!

I is the unit matrix and1 is an 838 block of ones.

To generalize forG.3, the rules governingc and d are
transparent. We just state how one findse. It is the average of
e

in

at
-

c-
e

i-

l

all the off-diagonal elements ofC 2. SinceC 2 is ultrametric
like C, all its rows and columns differ only by the order o
the very same elements that they contain, with the very sa
multiplicities. Now, trivially, ( j (C 2) i j 5( jkCikCk j , and the
sum upon j generates a constants5( jCk j511c112c2
14c31•••, which does not depend onk. Hence( j (C 2) i j
5s2. There remains to subtract the diagonal elementd51
1c1

212c2
21•••, and finally the average off-diagonal ele

ment reads e5(N21)21@(11(n51
G 2n21cn)221

2(n51
G 2n21cn

2#.
The equality betweenR15Q1/4, R25Q2/2, and R3

5Q3 is not surprising. Indeed, after the renormalization
2k2G, the global factor is the same—22G. More important,
the block structure of such ‘‘projectors’’Rk and the equal
numbers of11 and 21 matrix elements, beside zeroe
makes 1/(12N) the net average of the off-diagonal el
ments, since diagonal elements are just11. The same rea-
soning holds for anyG. Hence thek dependence ofG reads

G52G2k~Ek
222Ek Tr CRk̄1Tr C 2 Rk!

52G2k~Ek
222Ek Tr C̄Rk1Tr C2Rk!, ~10!

where there is no dependence upon the subscriptk of Rk

[2k2G Qk . For G53, we obtain TrCR̄512c5(72c1

22c224c3)/7 and TrC 2R̄5d2e5(722c124c228c3
17c1

224c1c2112c2
228c1c3216c2c3116c3

2)/7.
More generally, all matricesĀ, being invariant under the

permutation group, depend on two parametersu andv only,
their diagonal and off-diagonal elements, respectively. A
diagonal element of any productĀRk contains on one hand
u, weighted by the diagonal elementN21 of Rk , and on the
other handv, weighted by all the off-diagonal zeroes,1N21

and 2N21 in a column ofRk . The net balance of such
off-diagonal weights is2N21. Hence, the diagonal elemen
of the product boils down toN21(u2v). Finally, the trace
operation gives the general result TrĀRk5u2v.

To summarize this section, criterionG, Eqs.~10!, is avail-
able for the robustness of EPO’s. While ultrametricity is s
ficient to define eigenvectors and eigenprojectors, the e
calculation ofG, however, demands an explicit model for th
elementsck of C, which govern the eigenvalues. This is th
subject of the next section.

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

We use the model described earlier@5#. The covariances
are parametrized by one parameterd only, ck5dk. The pa-
rameterd is a positive number, slightly smaller than one, a
represents a ‘‘survival’’ probability along any segment of t
‘‘genetic’’ ~ultrametric! graph. If d512«, the parameter«
indicates a small mutation probability for each generati
The formula forG then becomes

2k2GG5F11d
~2d!k2121

2d21
22k21dkG2

22F11d
~2d!k2121

2d21
22k21dkG

3F12d
~2d!G21

~2G21!~2d21!
G
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111d2
~2d2!G21

2d221
2~2G21!21

3H F11d
~2d!G21

2d21 G2

212d2
~2d2!G21

2d221
J . ~11!

A slightly tedious operation gives the expansion,

]G
]k

5~2G1k222G112k!«2 ln 21O~«3!, ~12!

The minimum for k.(G11)/2 is confirmed by Fig. 3,
showing several cases,G58,16,20 withd50.99,0.95. Simi-
lar conclusions hold for values of« in the few percent range
Despite the logarithmic scale used in Fig. 3, it is reasona
to claim that the shown minima are not very sharp. Henc
reasonably broad band of values ofk makes robust enoug
quite a few EPO’s around the optimal valuek.(G11)/2.
Naturally, the conclusion is valid for the present model on
but it is likely to have a wider range. A further discussion
the validity of ultrametricty for realistic data is also in orde
anyhow. To the interested reader we suggest Ref.@6#.

V. DISCUSSION AND CONCLUSION

In the situation ofG generations with ‘‘binary ultrametric
ity’’ for genetic data, the results of Ref.@3# and the presen
work can be summarized and discussed as follows.

~i! One can Fourier analyze experimental dataXi ,i
51, . . . ,2G into ‘‘eigenvector components’’ Ot ,t
51, . . . ,2G21 or ‘‘eigenprojector intensities’’ Lk ,k
51, . . . ,G. Both sets of observables list decorrelated inf
mations about contrasts between the subfamilies descr
by the levels of the genetic graph. Both sets are usefu
detect contrasts that might hint at genetic diversification.

FIG. 2. ln@ln S(k)# as a function ofk for G58, dashed line, and
G516, solid line. Notice the minima fork5 log2 G. Scales arbi-
trarily adjusted to locate these minima at similar levels.
ys
le
a

,
f
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~ii ! All Ot’s show the same number of symmetries, hen
a similar robustness if one suspects that few dataXi carry
erroneous labelsi. Conversely,Lk’s with k. log2 G have a
minimum number of symmetries, hence are likely to
slightly perturbed.

~iii ! If many labelsi are suspect, robustness can be e
mated from criterions averaging over all permutations.
both this paper and Ref.@3#, we used criterions answering th
question ‘‘How doOt andLk differ from eigenobservables
with eigenvalueEk?’’ This is a significant question, becaus
Ek and the level in the graph are in a one-to-one corresp
dence. Our criterions take into account several factors, s
as the whole set ofEk’s with their hierarchy, their multiplici-
ties, and the numbers of symmetries of the observables u
label reshuffling.

~iv! In that case, of completely random permutations, a
in the more specific model wherecn5dn, two distinct com-
promises occur between the factors influencing such rob
ness criterions. ForOt , the large degeneracy 2G2k favors
low valuesk. log2 G, because random permutations mig
still convert an eigenvector into a mixture of eigenvecto
with the sameEk . The high degeneracy compensates for
fact thatEk lies at the lower end of the spectrum. ForLk ,
which by its very definition~degeneracy already collected!
shows no degeneracy, valuesk.G/2 bring both a bigger
symmetry group and an eigenvalue well embedded in
spectrum.

In practice, the reasonably flat minima shown in Fig.
make it reasonable to first use the EPO analysis. Jumps in
Lk sequence might trigger some attention. The situation
robustness can be appraised, depending on whether the l
number of wrong labels for the leaves of the graph is sm
or large. After such considerations, an EVO analysis c
make a useful complement.

FIG. 3. LG[ ln G as a function ofk for G520 ~upper pair!, G
514 ~middle!, andG58 ~lower pair!. Solid lines,d50.99, dashed
lines,d50.95. Notice the minima fork.(G11)/2.
ys.
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